Egg Export Council of offices at the addresses products should be directed to the USA Poultry & Egg Export Council and the USDAO's Foreign Agricultural Service. An effort has been made to describe all the food products processed and sold by the United States chicken industry. However, due to the independent structure of the industry, not all products, nor the array of product shapes, sizes and weights that may be available have been described.

Questions concerning specific products or the supply sources for all chicken and chicken products should be directed to the USA Poultry & Egg Export Council offices at the addresses shown on this page.

Visit our website at www.usapeec.org
Table of Contents

Introduction ... 2
Quality Inspection .. 4
Frozen Uncooked Products 5
Ready-to-Cook Classes 7
Preservation Methods 8
Further Processed Products 9
Specialized Products 10
Prepared Products 11
Preparing and Serving 13
Reheating, Holding and Serving 13
Conclusion ... 14
Preparing and Serving

Pathogenic contamination must be avoided when handling chicken. This requires diligent care and attention when preparing chicken and chicken products.

Specifically:
1) All food handlers must observe strict and sanitary personal hygiene.
2) Food handlers must continuously apply sanitary food handling techniques.
3) Handling of all products must be kept to a minimum.
4) Procedures for proper handling, cooking, serving and reheating must be closely followed.
5) Cooked meat must never be stored near raw, uncooked meat.

Reheating, Holding and Servings

Reheating
Chicken that has been cooked and then refrigerated should be reheated rapidly to a minimum of 165°F (73.9°C) before serving. This reheating should be done with ovens. Steam tables and all other food-holding equipment are not suitable for use in reheating.

Holding
The following internal temperatures for fully cooked chicken and chicken products should be maintained during serving.
- For cold foods: 40°F (4°C)
- For hot foods: 140°F (60°C) or higher

Servings per Pound
Allow 1/3 to 1/2 pound per person; one chicken (quartered) easily serves four.

The United States is the largest producer of food products in the world. And of all meat products, chicken is the most popular. It’s no wonder — chicken is high in protein and low in calories. It’s also lower in fat and cholesterol than other meats and rich in vitamins A and E.

High-quality poultry and poultry products from the U.S. are enjoyed all over the world. Each year the U.S. produces more than 14 million tons of poultry (chicken, turkey, duck) and nearly 77 billion shell eggs.

Producers and consumers insist on quality in every step of the process — from growout to processing to distribution.

Producing Quality
The best products begin with the best chickens. The modern domesticated broiler chicken is descended from the wild Bankiva chicken, which was domesticated in India more than 4,000 years ago. The earliest settlers in America brought chickens with them. Today’s broiler comes from breeding stock that is the product of years of genetic selection by top poultry scientists. The modern bird yields a high percentage of tasty, nutritious meat without the use of artificial ingredients or hormones.

In the U.S. broiler-producing region, which is concentrated mainly in the southeastern crescent from Delaware to Texas, broilers are grown by individual farmers. Fed a diet of high-protein grains such as corn and soy, broilers are grown to market size in just under seven weeks in automated, climate-controlled houses. Vertically integrated companies process, market and distribute the products. Inside the processing plant, cleanliness is an obsession. Plants routinely shut down daily for a thorough sanitizing washdown.

Maintaining this level of quality and cleanliness requires constant attention. Most U.S. processors have advanced research and testing laboratories on site. Plants also work closely with poultry research labs and universities in their individual states. This helps many plants to exceed the already high standards set by the U.S. Department of Agriculture.

Reheating,
Holding and Servings

Reheating
Chicken that has been cooked and then refrigerated should be reheated rapidly to a minimum of 165°F (73.9°C) before serving. This reheating should be done with ovens. Steam tables and all other food-holding equipment are not suitable for use in reheating.

Holding
The following internal temperatures for fully cooked chicken and chicken products should be maintained during serving.
• For cold foods: 40°F (4°C)
• For hot foods: 140°F (60°C) or higher

Servings per Pound
Allow 1/3 to 1/2 pound per person; one chicken (quartered) easily serves four.

High Standards and the USDA
The USDA inspection standards for all phases of poultry processing are the toughest in the world. By law, each bird must be inspected individually. At minimum, four separate inspections are required, starting with the live bird and continuing throughout the slaughtering, processing and packaging phases.

The USDA employs more than 7,000 highly trained food safety inspectors, and every poultry processing line in America is under the care of between one and three inspectors. Many inspectors have agricultural training or food science education, and many others have earned degrees in veterinary medicine.

From Us to You
Once processed, broiler parts and products are distributed around the U.S. and the world. For retail sale, products are packaged in a variety of ways to preserve wholesomeness. Products for the export market are blast-frozen and generally packed in bulk.

Broiler producers are shipping and distribution experts. In the domestic market, product leaves the plant in refrigerated trucks that are scrubbed and sanitized after every load. Temperature is monitored constantly. Product destined for export is blast-frozen at the plant or nearby. Frozen product may travel aboard reefer cargo vessels, or in ocean-going refrigerated containers.

All together, the United States poultry industry is a precisely monitored and tightly integrated system that produces, quite simply, the best poultry in the world.
The Quality Control Process

The Food Safety Inspection Service
All U.S. chicken meat which is offered for export must be inspected and approved by the Food Safety Inspection Service (FSIS) of the U.S. Department of Agriculture (USDA). The 90-year-old agency is regarded as a model for food inspection services worldwide. A USDA inspection stamp indicates that a chicken product was properly processed, has been inspected and is safe to eat. There are three integral layers in FSIS food safety assurance: manual inspection, HACCP and pathogen reduction.

1) Manual Inspection
According to the FSIS, meat inspection has several functions: to detect diseased meat and take it off the line; to assure clean and sanitary handling and preparation; to prevent adulteration and false labeling; and to apply inspection insignia. Federal inspectors are in place at every poultry plant in the United States examining each chicken carcass as it moves through the processing channel. Inspectors are closely involved in plant construction, ante-mortem inspection, post-mortem inspection, product inspection, product content determination, control and restriction of condemned products and marking, labeling and application of inspection insignia. Although this traditional form of inspection is thorough, it cannot detect microscopic or invisible defects.

2) Pathogen Reduction and HACCP:
A New Level of Food Safety Assurance…
On July 25, 1996, the FSIS introduced the Final Rule on Pathogen Reduction and Hazard Analysis and Critical Control Points (HACCP). The aim of this new approach is two-fold: to target pathogens that cause foodborne illness and to increase industry’s awareness of its responsibility to produce safe food.

What is HACCP?
Essentially, HACCP is a procedure which seeks to identify and control the points in processing at which contamination can occur. Since HACCP systems are designed to accommodate specific plant requirements, the process design varies from plant to plant. A typical HACCP process involves the following steps:

Step one: Identify hazards in the food processing system.
Example: bacteria

Step two: Identify critical control points in the processing channel at which potential hazards can be eliminated or reduced.
Example: cleaning, cooking, chilling, handling and storage.

Step three: Establish preventive measures with critical limits for each control point.
Example: time and temperature are examples of critical limits. Poultry must be chilled to 40 degrees F. during processing to prevent bacteria from growing. In this case, 40 degrees would be the critical limit.

Step four: Establish procedures to monitor the control points.
Example: where temperature has been identified as a critical limit, product samples would be checked at fixed intervals to ensure that the temperature is within the critical limit.

Step five: Establish procedures for taking corrective actions when monitoring indicates that a critical limit has not been met.
Example: take steps to lower the temperature in the chiller.

Step six: Establish effective record-keeping to document the HACCP system.
Example: in regard to temperature monitoring, records should be kept of temperature measurements and the corrective action taken where applicable.

Step seven: Establish procedures to certify that monitoring equipment is always effective.
Example: in regard to temperature monitoring, the temperature gauges should be tested at fixed intervals to ensure that they are working properly.

3) What is Pathogen Reduction?
The pathogen reduction initiative has two aspects. First, in order to verify that HACCP systems are effective in reducing bacterial contamination, FSIS has established pathogen-reduction performance standards for salmonella. Plants must ensure that their current national rate is below the current national rate. Secondly, slaughter plants will be required to conduct microbial testing for generic E. coli to verify that their process-control systems have prevented fecal contamination, the primary vehicle for salmonella contamination. FSIS has established pathogen-reduction performance standards for salmonella. Plants must ensure that their current national rate is below the current national rate. Secondly, slaughter plants will be required to conduct microbial testing for generic E. coli to verify that their process-control systems have prevented fecal contamination, the primary vehicle for harmful bacteria.

Bringing you the Highest-Quality Chicken
The traditional FSIS form of inspection is a thorough, comprehensive system for manual inspection; however, it cannot detect microscopic or invisible problems. The introduction of the Final Rule on Pathogen Reduction and HACCP adds a scientific dimension to the existing inspection process. HACCP systems dramatically reduce potential hazards in the manufacturing process while the pathogen reduction initiative prevents contaminated products from entering the market place. The combination of these three key elements in U.S. food safety assurance means that consumers around the world can enjoy the highest-quality U.S. chicken products.
Frozen Uncooked Products

All skin-on parts shown are available in both yellow and white skin variations.

Note that the majority of U.S. broiler processing plants employ personnel certified to slaughter birds using methods that strictly comply with religious requirements.

Whole Chickens

Whole Chickens are marketed in two forms: fresh or frozen. They may be packaged individually and carry a producer or processor's brand name. A giblet pack (neck, heart, liver and gizzard) is usually included with whole chickens. Chickens packaged without giblets may be labeled WOGS (without giblets) or WOGN (without giblets and neck). Skin color of broilers is either white or yellow, and is generally determined by natural ingredients in the diet. Skin color is a matter of preference, with customers in different parts of the world preferring one color over the other.

Broiler Drumsticks

Broiler drumsticks include the lower portion of the leg quarter, or that portion between the knee joint and the hock. Drumsticks weigh from 4 to 5 ounces (114 to 142 grams). Two drumsticks make one serving.

Broiler Breast Quarter

Broiler halves may be further cut into breast quarters which include the wing. A broiler breast quarter, including portions of the back, is all white meat.

Whole Chicken Wing

The whole wing is an all white meat portion composed of three sections: the drumette, mid section and tip.

Broiler Breast Quarter

Broiler halves may be further cut into breast quarters which include the wing. A broiler breast quarter, including portions of the back, is all white meat.

Whole Broiler Leg

A whole broiler leg is the drumstick-thigh combination. The whole leg differs from the leg quarter in that it does not contain a portion of the back. One leg-thigh combination is considered a serving.

Broiler Breast Quarter

Broiler halves may be further cut into breast quarters which include the wing. A broiler breast quarter, including portions of the back, is all white meat.

Whole Chicken Wing

The whole wing is an all white meat portion composed of three sections: the drumette, mid section and tip.

Roaster

One of the larger varieties of whole chickens, roasters may be marketed with or without giblets.

8-Piece Cut Broiler

The whole broiler is cut into 2 breast halves with ribs and back portion, 2 thighs with back portion, 2 drumsticks and 2 wings. The parts are packaged and labeled whole cut-up chicken. Cut-up broilers are usually sold without giblets.

Specialized Products

Specialized product are chicken items developed for industrial, food service or home use. They include major groups of raw chicken, cooked chicken, broth, fat and dehydrated chicken. The cooked products are generally available as broth, fat and dehydrated chicken.

Mechanically Separated Chicken (MDM)

The chicken is separated mechanically from the bone and skin to produce products that vary in texture.

Finely Ground Chicken Emulsified (comminuted)

Packaged frozen in 40 pound (18 kilogram) poly-lined boxes, and fresh in 2,000 pound (907 kilogram) poly-lined tote bins.

Finely Ground Chicken Non-Emulsified (non-comminuted)

Ground Chicken

Packaged frozen in 40 pound (18 kilogram) poly-lined boxes, and fresh or frozen in 1 to 10 pound (.45 to 4.54 kilogram) chubs, and fresh in 2,000 pound (907 kilogram) poly-lined tote bins.

Powdered Chicken

Produced from mechanically separated or hand deboned fowl or broiler. The raw material is cooked, homogenized and spray-dried to produce a fine, tan colored powder.

Dehydrated Granulated Chicken

Made from raw materials identical to powdered chicken, the finished product is textured with particle sizes that range from 1/8 of an inch to 1/4 of an inch. Packed for shipment in 50 pound (22.7 kilogram) poly-lined boxes or in 100 pound (45 kilogram) poly-lined fiber drums.

Dehydrated Biced or Irregular Chicken

Combinations of whole breast, thigh or finely ground chicken blended with seasoning and binders before cooking in a loaf. The cooked product is ground, diced or random cut, then freeze-dried and packaged in oxygen-moisture barrier foil-poly bags.

Chicken Broth

An ingredient used primarily for the industrial manufacturing of consumer food items. Available as both a frozen broth or dehydrated powder, with special formulations that include MSG, fats, and salt, etc. Frozen product is packaged in 40 pound (18 kilogram) poly-lined boxes and in plastic pails in quantities up to 50 pounds (22.7 kilogram). Dehydrated broth is packaged in 50 pound (22.7 kilogram) boxes.

Chicken Fat

Used primarily in industrial food preparation and available in a liquid, frozen or dry-powdered form. Sold in poly-lined fiber boxes and plastic pails, fiber and metal drums or tanker loads up to 40,000 pounds (18,144 kilograms).
Further Processed Products

Chicken Wings – cooked, breaded
- Pre-breaded
- Flavor assortment
- Fully cooked

Marinated Raw Breaded Wings
- Pre-marinaded
- Pre-breaded
- Ready to cook

Unbreaded – Fully cooked Marinated Wings
- Pre-glazed
- Flavor assortment
- Fully cooked

Ready to Cook Wings
- Ice glaze
- Ready to cook

Cutlets: Pre-Breaded
- Pre-breaded
- Fully cooked

Chicken Breast – Grilled
- Fully cooked
- Skinless, unbreaded
- Marinaded

Chicken Breast – Breaded
- Pre-breaded
- Flavor assortment
- Fully cooked

Nuggets and Tenders
- Fully cooked
- Variety of styles/seasonings

Individually Quick Frozen (IQF) Chicken Pieces
- Unbreaded Pieces:
 - Quick frozen in minutes
 - Variety of individually frozen cuts
 - Pre-cleaned
 - Recipe ready
 - Birds are computer sized
 - Long shelf life

- Breaded Pieces:
 - Pre-breaded and marinaded
 - Ready to cook

- Breast Tenders
 - All natural breast tenderloin
 - Uniquely seasoned marinades/breading
 - Lighly breaded
 - Available in a variety of pack sizes

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further processing often simply to poultry products that require additional processing before they may be consumed. All raw and uncooked products are considered further processed. So do all the cooked, breaded, dehydrated and frozen products offered in the marketplace.</td>
<td></td>
</tr>
<tr>
<td>Chicken Wings – cooked, breaded</td>
<td>Saves time and labor. Breading coverage is even to prevent fryer fall-off.</td>
</tr>
<tr>
<td>Flavor assortment</td>
<td>Wide variety of flavors to offer customers.</td>
</tr>
<tr>
<td>Fully cooked</td>
<td>Quick and easy preparation.</td>
</tr>
<tr>
<td>Marinated Raw Breaded Wings</td>
<td>Chicken holds taste /Flavor after frying. Stays tender & juicy even under hot lamp.</td>
</tr>
<tr>
<td>Ready to cook</td>
<td>Saves time and labor. Uniform breading coverage prevents fryer fall-off.</td>
</tr>
<tr>
<td>Unbreaded – Fully cooked Marinated Wings</td>
<td>Reduced preparation time. Savory flavor appeals to customers.</td>
</tr>
<tr>
<td>Flavor assortment</td>
<td>Wide range of flavors to offer customers.</td>
</tr>
<tr>
<td>Fully cooked</td>
<td>Preparation is quick and easy – from freezer to plate in minutes!</td>
</tr>
<tr>
<td>Ready to Cook Wings</td>
<td>Ice glaze</td>
</tr>
<tr>
<td>Ready to cook</td>
<td>Prevents freezer burn.</td>
</tr>
<tr>
<td>Cutlets: Pre-Breaded</td>
<td>Saves time and labor. Uniform breading reduces fryer fall-off.</td>
</tr>
<tr>
<td>Fully cooked</td>
<td>Short preparation time cuts foodservice costs.</td>
</tr>
<tr>
<td>Chicken Breast – Grilled</td>
<td>Fully cooked</td>
</tr>
<tr>
<td>Skinless, unbreaded</td>
<td>Eliminates risk of undercooking. Saves time and labor.</td>
</tr>
<tr>
<td>Marinaded</td>
<td>Low calorie count per serving portion.</td>
</tr>
<tr>
<td>Chicken Breast – Breaded</td>
<td>Fully cooked</td>
</tr>
<tr>
<td>Pre-breaded</td>
<td>Saves time and labor. Uniform breading coverage prevents fryer fall-off.</td>
</tr>
<tr>
<td>Flavor assortment</td>
<td>Wide variety of flavors to offer customers.</td>
</tr>
<tr>
<td>Fully cooked</td>
<td>Eliminates risk of serving raw chicken. Quick and easy preparation.</td>
</tr>
<tr>
<td>Nuggets and Tenders</td>
<td>Fully cooked</td>
</tr>
<tr>
<td>Variety of styles/seasonings</td>
<td>Saves time and labor. Eliminates risk of serving raw chicken.</td>
</tr>
<tr>
<td></td>
<td>Ideal for snack foods or appetizers.</td>
</tr>
</tbody>
</table>

9-Piece Cut Broiler
- Broilers may be cut into nine pieces for marketing. The pieces include 2 breast keel portion, 2 breast sides or ribs, 2 thighs, 2 wings and 2 drumsticks. The nine piece cut broiler is marketed primarily through food service outlets and fast food restaurants.

Broiler Halves
- The broiler is split from front to back through the backbone and keel to produce 2 halves of approximately equal weight. Equal parts of backbone are present on each half.

Broiler Split Breast with Back
- A broiler breast quarter with the wing removed is marketed as the split breast. They are white meat and weigh from 12 to 15 ounces (340 to 425 grams) each.

Broiler Split Breast without Back
- A leg quarter is the drumstick and thigh portion with one half of the portion of the back attached. Leg quarters may also include attached abdominal fat and up to two ribs.

Chicken Wing Portion Mid Section with Tip
- The flat center section and the flipper (wing tip).

Chicken Wing Portion Mid Section
- The section between the elbow and the tip, sometimes called the wing flat or mid-joint.

Chicken Wing Portion Drummettes
- The first section between the shoulder joint and the elbow.
The broiler thigh is that portion of the leg above the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separating the knee joint. The broiler thigh with back portion is produced by separation...